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Large-Eddy Simulation of
Shallow Water Langmuir
Turbulence Using Isogeometric
Analysis and the Residual-Based
Variational Multiscale Method
We develop a residual-based variational multiscale (RBVMS) method based on isogeo-
metric analysis for large-eddy simulation (LES) of wind-driven shear flow with Langmuir
circulation (LC). Isogeometric analysis refers to our use of NURBS (Non-Uniform
Rational B-splines) basis functions which have been proven to be highly accurate in LES
of turbulent flows (Bazilevs, Y., et al. 2007, Comput. Methods Appl. Mech. Eng., 197, pp.
173–201). LC consists of stream-wise vortices in the direction of the wind acting as a sec-
ondary flow structure to the primary, mean component of the flow driven by the wind. LC
results from surface wave-current interaction and often occurs within the upper ocean
mixed layer over deep water and in coastal shelf regions under wind speeds greater than
3 m s�1. Our LES of wind-driven shallow water flow with LC is representative of a
coastal shelf flow where LC extends to the bottom and interacts with the sea bed bound-
ary layer. The governing LES equations are the Craik-Leivobich equations (Tejada-Mar-
tı́nez, A. E., and Grosch, C. E., 2007, J. Fluid Mech., 576, pp. 63–108; Gargett, A. E.,
2004, Science, 306, pp. 1925–1928), consisting of the time-filtered Navier-Stokes equa-
tions. These equations possess the same structure as the Navier-Stokes equations with an
extra vortex force term accounting for wave-current interaction giving rise to LC. The
RBVMS method with quadratic NURBS is shown to possess good convergence character-
istics in wind-driven flow with LC. Furthermore, the method yields LC structures in good
agreement with those computed with the spectral method in (Thorpe, S. A., 2004, Annu.
Rev. Fluids Mech., 36, pp. 584 55–79) and measured during field observations in
(D’Alessio, S. J., et al., 1998, J. Phys. Oceanogr., 28, pp. 1624–1641; Kantha, L., and
Clayson, C. A., 2004, Ocean Modelling, 6, pp. 101–124). [DOI: 10.1115/1.4005059]

1 Introduction

Wave effects play an important role in determining surface
boundary fluxes of momentum, energy and scalars and ultimately
vertical mixing [1]. Wave-current interaction is among several flow
phenomena generating turbulence in the ocean; others include
wind-and tidal-driven shear, buoyancy-driven convection and wave
breaking. Wind speeds greater than 3 m s�1 often lead to wave-
current interaction sufficiently strong to generate Langmuir circula-
tion (LC), consisting of pairs of parallel counter-rotating vortices
(or cells) oriented approximately in the downwind direction, as
shown in the sketch in Fig. 1. The cells are characteristic of the tur-
bulence (i.e., the Langmuir turbulence) advected by the mean flow.

The surface convergence of each cell generates a downwelling
region characterized by negative vertical velocity fluctuations
while the bottom divergence generates an upwelling region charac-
terized by positive vertical velocity fluctuations, leading to increased
levels of mixing. Bubbles, particulate matter and flotsam accumulate
along the surface convergence of the cells forming what are often
referred to as “windrows.” Surface convergences of the cells are
characterized by intensification of positive downwind velocity fluctu-
ations leading to an enhanced mean current as seen in Fig. 1.

Historically, Langmuir cells have been measured within the
upper ocean surface mixed layer in deep water far above the bot-
tom (Fig. 1). However, Gargett et al. (2004) reported detailed
acoustic Doppler current profiler (ADCP) measurements of Lang-
muir cells engulfing the entire water column lasting as long as 18

hs in a shallow water region off the coast of New Jersey. Measure-
ments were made at Rutgers’ LEO15 cabled observatory in 15 m
depth water. Gargett et al. (2004) denoted the observed full-depth
cells as Langmuir supercells (LSC) because of their important con-
tribution towards transport of sediment and bioactive material on
shallow shelves. The strong coherence of LSC makes them more
effective than classical bottom boundary layer turbulence at moving
material out of the low-speed layer near bottom and into the strong
and strongly directional downwind mean flow associated with these
events. Gargett et al. (2004) suggested that transport in such super-
cell events dominates net annual transport of sediment at LEO15.

Originally described by Langmuir [2], LC is now generally
accepted to be the result of wave-current interaction or, more spe-
cifically, the interaction between the wind-driven shear current
and the Stokes drift current induced by surface gravity waves [2].
As with all turbulence, Langmuir turbulence encompasses a range
of spatial and temporal scales. Among the larger spatial scales are
those of the cells which extend in the downwind direction for tens
of meters to kilometers and are separated by distances ranging
from meters to as much as a kilometer [3].

A mechanism for the generation of LC was first proposed by
Craik and Leibovich [4]. It consists of a vortex force (the Craik-
Leibovich force or C-L force) in the momentum equations repre-
senting the interaction between the Stokes drift velocity, induced
by surface gravity waves, and the vertical shear of the current;
specifically, the C-L vortex force is the vector cross product
between the Stokes drift velocity and the vorticity of the flow.
Main parameter ingredients in this force are the dominant wave-
length and amplitude of the surface waves used to define the
Stokes drift velocity profile. The square root of the ratio of wind
friction velocity to surface Stokes drift velocity defines the
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turbulent Langmuir number, Lat, a measure of the strength of
wind-driven shear forcing relative wave forcing [5]. The strength
of the Langmuir cells is thus inversely proportional to Lat.
Although this definition is counterintuitive, it is widely used within
the LES community [6]. A more intuitive definition is described in
Ref. [7] as the ratio of Stokes production of turbulence kinetic
energy (TKE) to shear production of TKE. In this definition, the
strength of the Langmuir turbulence increases with Lat.

The C-L force arises from low-pass time filtering or wave-phase
averaging of the Navier-Stokes equations in order to filter out the
high frequency surface waves. Hereafter, the time filtered Navier-
Stokes equations with the C-L force will be referred to as the C-L
equations. Inclusion of the C-L force in the momentum equation
greatly reduces the computational complexity as it eliminates the
need to resolve the surface waves giving rise to LC. Instead, the top
of the flow domain is simply taken to be bounded by a flat (nonde-
forming) surface denoting the mean water height. Note that the C-L
framework does not account for the impact of wave-breaking on the
turbulence resolved. Sullivan and McWilliams [8] have incorporated
a stochastic model of wave breaking to the C-L equations in their
LES of Langmuir circulations within the upper ocean mixed layer.

The C-L equations have enabled a number of successful LES
(large-eddy simulations) and RANS (simulations based on the
Reynolds averaged Navier-Stokes equation) describing the verti-
cal and horizontal structure of upper ocean Langmuir turbulence
in statistical equilibrium, e.g., [5,9,10–13]. See the review in Ref.
[10] for further references. In direct numerical simulation (DNS)
all of the scales of a turbulent flow are explicitly computed while
in RANS, only the mean component of the flow is explicitly com-
puted and the turbulent scales or eddies are parameterized. Large-
eddy simulations is a compromise between the computationally
expensive DNS and the less demanding RANS. In LES the more
energetic, larger eddies are explicitly computed while the smaller
eddies are modeled [14]. Note that a DNS of Langmuir turbulence
would not be possible with the C-L equations, as these equations
are the result of time filtering. A DNS would require a prohibit-
edly expensive simulation resolving surface waves and thus direct
resolution of the interaction between surface waves and the shear
current giving rise to Langmuir circulation.

Of particular interest here is the work of Tejada-Martı́nez and
Grosch [9] who performed LES of a finite-depth, wind-driven
shear current with full-depth Langmuir circulation guided by the
measurements in Refs. [15,16]. Their LES used the C-L equations.
In particular, predictions from the LES compared favorably with
in-water measurements of the Reynolds stress components. Fur-

thermore, the structure of the Langmuir cells, manifested as a sec-
ondary turbulent structure in the shear flow, was consistent with
that measured during the in-water observations.

Ideally, computational methods for turbulent flow must be able
to resolve, or accurately model all the relevant flow scales and their
interactions in the presence of complex geometrical configurations.
Currently, computational approaches for turbulent flows include ef-
ficient techniques that are based on high-order functions (e.g.,
global polynomial and Fourier bases) able to accurately represent
the small scale physics in turbulent processes at relatively high
Reynolds numbers, albeit on very simple geometrical configura-
tions. For example, LES performed with the C-L equations have
focused on simple flow configurations while accurately resolving
complex physical phenomena such as upper ocean mixed layer
(UOML) turbulence and internal waves in the pycnocline below
the UOML [17,18]. On the other end of the spectrum, much pro-
gress has been made over the last several decades on the computa-
tion of flows over complex geometrical configurations. These
methods, based on low-order functional representations, are able to
represent relatively well the gross features of a given turbulent
flow, yet they do not possess the high-order accuracy of the afore-
mentioned spectral techniques to predict the more detailed features
of the flow. Thus, it appears that there is a gap between techniques
capable of accurately resolving all scales in turbulent flows on sim-
ple geometries and techniques capable of resolving only large scale
(gross) features on complex geometries. In order to bridge this gap,
a methodology is necessary that simultaneously possesses superior
approximation and uniform convergence behavior over a wide
range of spatial and temporal scales, necessary for capturing flow
physics, and the geometrical flexibility, necessary for geophysical
and engineering applications. We feel that isogeometric analysis
based on Non-Uniform Rational B-splines (NURBS), recently pro-
posed as a new computational technique by Hughes et al. [19], is
an excellent candidate for the task. NURBS are spline basis func-
tions used for representation of complex geometry, are locally
supported, and possess spectrallike approximation properties com-
pared to standard complex-geometry approaches (i.e., low-order fi-
nite elements and finite volumes).

In this paper, we extend variational multiscale turbulence model-
ing procedures to the C-L equations and implement them using
isogeometric analysis based on NURBS. In the case of the Navier-
Stokes equations, this framework has been shown to yield spectral-
like resolution while rapidly converging under refinement to direct
numerical simulation (DNS), and providing good quality large-eddy
simulation (LES) results on intermediate meshes (e.g., see Bazilevs

Fig. 1 Sketch of Langmuir circulation spanning the upper ocean mixed layer
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et al. [20]), for both homogeneous as well as boundary layer and tran-
sitional flows. Extension of these methodologies to the C-L equations
will allow future research investigating effects of complex lateral
boundaries and bathymetry on Langmuir circulation and other salt
and momentum mixing processes in coastal oceans and estuaries.

Solution of the Navier-Stokes equation augmented with the C-L
vortex force is nontrivial as the latter term is an advective term
giving rise to instabilities requiring stabilization of the type
presented in this paper. Note that the C-L vortex force has been
previously identified in Refs. [10] and [21] as giving rise to insta-
bilities by triggering scales of size smaller than the grid (i.e., sub-
grid-scales). The goal of this paper is the nontrivial extension of
advection stabilization within a variational formulation in order to
consistently account for the advective nature of the C-L vortex
force. Advection stabilization behaves as a subgrid-scale model
derived from the Navier-Stokes equations (in our case the Navier-
Stokes equations augmented with the C-L vortex force) via a split-
ting of the space of solutions. The splitting results in finite-
dimensional equations governing the large-eddies and infinite
dimensional equations governing unresolved eddies. Analytical
expressions for the solution of the latter are obtained via mathe-
matical approximations [1]. The splitting of the space of solutions
does not involve application of spatial filtering nor does it gener-
ate a residual subgrid-scale stress, as is the case in classical LES.
In this approach the subgrid-scale model is not for the subgrid-
scale stress, but rather for a subgrid-scale velocity. Thus, a con-
ventional subgrid-scale stress is not present in the formulation. As
noted earlier, Bazilevs et al. [20] have shown that this approach
yields LES solutions on intermediate meshes while rapidly con-
verging to direct numerical simulation (DNS) solutions on finer
meshes. Their simulations involved turbulent channel flows and
forced isotropic turbulence.

2 Numerical Approach

In the following subsections we provide precise details of the nu-
merical method deployed for solving the Craik-Leibovich equations.

2.1 The Craik-Leibovich Equations at the Continuous
Level. Let X 2R3 be the problem domain and let @X denote its
boundary. A conservative form of the dimensionless Navier-
Stokes equations, with C-L forcing, in the Eulerian frame are
taken as a starting point of our developments, and are given as

@u

@t
þr � ðu� uÞ þ rp�r � ð2Re�1rsuÞ

� La�2
t /�r� u ¼ 0 in X (1)

r � u ¼ 0 in X (2)

Equations (1) and (2) represent conservation of linear momentum
and mass, respectively, assuming density is constant. In the above
u and p are the fluid velocity and pressure (divided by density),
rs ¼ ð1=2Þðr þ ðrÞTÞ is the symmetric spatial gradient of the ve-
locity, / is the Stokes drift velocity and f is the body force per unit
mass. The physical nature of the flow is characterized by the
dimensionless Reynolds and turbulent Langmuir numbers, Re and
Lat, respectively. The turbulent Langmuir number is inversely pro-
portional to the strength of Langmuir circulation (i.e., wave forc-
ing) relative to the shear flow (i.e., wind forcing) in the model.

The last term on the left-hand-side of Eq. (1) represents C-L
forcing. Because the term depends on the first-order derivatives of
the velocity field, it has the mathematical structure of advection.
With this in mind, we re-write the C-L momentum equations as

@u

@t
þr � ðu� uÞ þ rp�r � ð2Re�1rsuÞ þ ~Ai

@u

@xi
¼ f in X

(3)

where ~Ai’s are

~A1 ¼ La�2
t

0 �/2 /3

0 /1 0

0 0 /1

0
@

1
A (4)

~A2 ¼ La�2
t

/2 0 0

�/1 0 �/3

0 0 /2

0
@

1
A (5)

~A3 ¼ La�2
t

/3 0 0

0 /3 0

�/1 �/2 0

0
@

1
A (6)

and summation on the repeated index i is employed. In the follow-
ing section we present the numerical formulation of the above par-
tial differential equations.

2.2 The Space-Discrete Formulation of the Craik-
Leibovich Equations. In this section we present the residual-
based variational multiscale (RBVMS) formulation of the C-L par-
tial differential equations. The formulation is a straight-forward
extension of the RBVMS formulation for the incompressible
Navier-Stokes equations [20,22] that also accounts for the presence
of the C-L forcing terms. For better approximation of thin bound-
ary layers near no-slip walls, weak enforcement of the Dirichlet
boundary conditions, proposed in Ref. [23], is also employed.

Let Vh denote the discrete solution space for the velocity-
pressure pair {uh, ph} and let Wh denote the discrete weighting
space for the linear momentum and continuity weighting functions
{duh, dph}.

The space-discrete Navier-Stokes problem is stated as: Find
{uh, ph} 2 Vh such that 8fduh; dphg 2 Wh;

Bðfduh; dphg; fuh; phgÞ þ Bvmsðfduh; dphg; fuh; phgÞ
þ Bwbcðfduh; dphg; fuh; phgÞ ¼ ðduh; fÞX þ ðdw; hÞCh

(7)

In the above, ð�; �ÞA denotes an L2-inner product over A and Ch is a
part of the domain boundary where traction h is applied. In this
work, the last term on the right-hand-side of Eq. (7) is active and
models the effect of wind stress on the water surface. The rest of
the terms of the above formulation are defined in what follows.

Bðfw; qg; fu; pgÞ ¼ w;
@u

@t

� �
X

� rw;u� uð ÞXþðq;r � uÞX

� ðr � w; pÞX þ w; ~Ai
@u

@xi

� �
X

þ ðrsw; 2Re�1rsuÞX (8)

is the Galerkin part of the weak form

Bvmsðfw; qg; fu; pgÞ ¼ � rw;u0 � uþ u� u0 þ u0 � u0ð ÞX

� ~A
T

i

@u

@xi
;u0

� �
X

�ðr �w; p0ÞX � ðrq;u0ÞX:

(9)

are the RBVMS terms, and the pair {u0, p0} denotes the velocity
and pressure subgrid scales (i.e., the scales that are too small to be
reasonably approximated on a given mesh).

Analogously to Ref. [20], the subgrid scales are modeled as

u0 ¼ �sM

@u

@t
þ uruþrp� Re�1Duþ ~Ai

@u

@xi
� f

� �

p0 ¼ �sCr � u (10)

where sM and sC are the subgrid-scale parameters defined in what
follows. The subgrid-scale parameters are also known as the stabi-
lization parameters due to the similarities between RBVMS and
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stabilized methods [24–26]. In fact, stabilized methods are the
progenitors of the RBVMS methodology. Note that the fine scales
are proportional to the residual of the C-L partial differential
equations, which renders the numerical methodology consistent.
Also note that the momentum equation residual is in the advective
form, which may be derived from the conservative form given by
Eq. (1) using the incompressibility constraint from Eq. (2).

To define the subgrid-scale parameters for the C-L equations,
the momentum equations are written in the form of a quasi-linear
advective-diffusive system as

@u

@t
þ Ai

@u

@xi
� Re�1Du ¼ f �rp in X; (11)

where Ai ¼ ðuiIþ ~AiÞ are the advective flux jacobians given by

A1 ¼
u �/2 �/3

0 uþ /1 0

0 0 uþ /1

0
@

1
A (12)

A2 ¼
vþ /2 0 0

�/1 v �/3

0 0 vþ /2

0
@

1
A (13)

A3 ¼
wþ /3 0 0

0 wþ /3 0

�/1 �/2 w

0
@

1
A: (14)

The C-L forcing contributions render these jacobians nondiagonal
and nonsymmetric, which requires an appropriate definition of the
subgrid-scale parameters. Based on the developments in Ref.
[27–29] for advective-diffusive systems, they may be computed
as follows:

sM ¼
4

Dt2
Iþ GijAiAj þ CIGijGijRe�2I

� ��1
2

(15)

where

Gij ¼
@nk

@xi

@nk

@xi
(16)

is the metric-tensor of the mapping from the parametric to the
physical domain of the NURBS element, and CI is a constant aris-
ing in the element-level inverse estimate (see, e.g., Ref. [30]).

The definition of sM in Eq. (15) necessitates the computation of
the matrix square root inverse. We do so using the Denman-
Beavers algorithm [31], which computes the matrix square root
inverse in an iterative fashion. The algorithm is started by setting
X0¼ sM

�2 and Y0¼ I, and the iteration consists of the following
updates:

Xkþ1 ¼
1

2
Xk þ Y�1

k

� �
Ykþ1 ¼

1

2
Yk þ X�1

k

� � (17)

where k is the iteration index. In a small number of iterations Y
converges to sM defined by Eq. (15). Given sM, sC is computed as

sC ¼ ðGijsMijÞ�1
(18)

which is a generalization of the relationship given in Refs. [20,32]
An alternative definition of the subgrid-scale parameters sM

and sC based on the element-level matrices and vectors may be
employed in our discrete formulation. The subgrid-scale parame-
ter definitions given in Ref. [33] may be naturally extended to the
C-L equations, which is likely to improve the accuracy and

robustness of the numerical method for small time step sizes [34].
However, we did not pursue this approach here.

Finally, Bwbc, defined as

Bwbcðfw; qg; fu; pgÞ ¼ ðw;�2Re�1rsu � nÞCg

þ ð�2Re�1rsw � n; ðu� gÞÞCg

þ ðw; sBðu� gÞÞCg
(19)

contains terms that weakly impose the boundary condition u¼ g.
In Eq. (19), Cg is the Dirichlet part of the problem domain bound-
ary and g is the prescribed flow velocity vector. In the formulation
we assume that the normal component of the flow velocity vector
is imposed strongly. To ensure numerical stability and optimal
convergence, the penalty parameter sB in Eq. (19) is chosen as

sB ¼ CbRe�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
niGijnj

p
(20)

where ni’s are the Cartesian component of the unit outward nor-
mal vector to Cg and Cb is an elementwise constant emanating
from a boundary inverse estimate [23]. Further discussion and
computational results employing weakly-enforced Dirichlet con-
ditions may be found in Refs. [23,32,35,36].

3 Computational Setup

The computational domain, depicted in Fig. 2, is a rectangular
box with dimensions 2pd� 2d� 8=3ð Þpd, in the stream-wise or
downwind (x), wall-normal or vertical (y), and span-wise or cross-
wind (z) directions, respectively. The half-depth of the domain (in
the y-direction) is d. The flow is driven by a wind stress in the x
direction applied at the top surface (y¼ 2d), where no-penetration
boundary condition is also assumed to hold. No-slip conditions
(enforced weakly) are applied at the bottom wall boundary (y¼ 0).
In the stream-wise and span-wise directions periodic boundary
conditions are employed in order to represent an unbounded do-
main in these directions, approximating a continental shelf flow
miles away from coastal boundaries.

Characteristic flow velocity, Stokes drift velocity and length are
taken as wind stress friction velocity us, Stokes drift velocity at
the surface us, and half-depth d, respectively. Characteristic time
scale is taken as d/us. Using these scales to nondimensionalize the
C-L equations gives rise to the Reynolds number defined as
Re¼ usd/v (where v is kinematic viscosity) and the turbulent
Langmuir number defined as

Lat ¼
ffiffiffiffiffiffiffiffiffiffiffi
us=us

p
The nondimensional Stokes drift / in Eq. (1) is given by

/ ¼
coshð2jyÞ

2 sinhð2jdÞ
0

0

0
BB@

1
CCA y 2 ½0; 2d� (21)

Fig. 2 Computational domain
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where j¼ 2p/c is the dominant wave number and c is the domi-
nant wavelength of surface gravity waves generating Langmuir
circulation (see Refs. [37,38] for details). In their LES of Lang-
muir circulation within the upper ocean mixed layer in deep
water, Harcourt and DAsaro [39] have used a Stokes drift velocity
in the C-L force representative of wind seas characterized by
broadband equilibrium displacement that represent the cumulative
effect over some fetch or duration of surface stress due to local
wind conditions. Their broadband wave spectra have Stokes drift
composed of a Stokes drift spectrum with elements that decay
exponentially below the surface.

The flow is driven purely by a wind stress; thus the body force,
f, in Eq. (1) is 0. The dimensionless wind stress, h, is given by

h ¼
1

0

0

0
@

1
A (22)

We note that setting /¼ 0 and keeping the same boundary condi-
tions gives a similar flow configuration similar to traditional Cou-
ette flow, but with a surface wind-stress and a stationary no-slip
bottom instead of the usual no-slip bottom and top plates moving
in opposite direction to each other.

For the computations presented here, we set Re¼ 395, Lat

¼ 0.7, and k¼ 12d. These are identical to the parameters reported
in spectral LES calculations of Ref. [9]. Furthermore, parameters
Lat¼ 0.7 and k¼ 12d are characteristic of the wind and wave
forcing conditions during the field measurements of shallow
water, full-depth Langmuir circulation of Gargett and Wells [16].
Their measurements were made in a 15 ms-deep water column on
the coastal shelf off southern New Jersey.

Quadratic NURBS that are C1-continuous across mesh knots
are employed in the computations. We perform our simulations
using a sequence of h-refined meshes to ensure convergence of
the computational results. The coarsest mesh is comprised of
24� 26� 24 NURBS elements, while the finest mesh has
64� 66� 64 NURBS elements. In general, for NURBS of order p
and maximal continuity p �1, the number of basis functions in
each tensor-product direction equals to nþ p, where n is the num-
ber of elements in this direction. (For periodic boundary condi-
tions, the number of basis functions is n, which is independent of
the polynomial order.) This is in contrast to the C0-continuous fi-
nite elements of order p, where the number of basis functions is
pnþ 1 (or pn in the periodic case). This amounts to significant
savings in the number of degrees of freedom for NURBS elements
with respect to finite elements of the same order, especially in 3D.

The mesh is uniform in the periodic directions. The elements in
the wall-normal (vertical) direction are stretched toward the top
and bottom boundaries. The mesh knots are placed according to

yi ¼ b�1 tanh
2i

Ny þ 1
� 1

� �
tanh�1ðbÞ

� �
i 2 ½1;Ny þ 1� (23)

where b¼ 0.973 is used
The flow is advanced in time using the generalized-a method

[40,41] and the resulting nonlinear equations are solved using an
inexact Newton Krylov approach (see Ref. [20] for details).
Details of the mesh and time step sizes may be found in Table 1.

4 Numerical Results

In the following sub-sections we present results from LES of
wind-driven flow with and without Langmuir circulation (LC). In
the description of these results, components of the velocity vector u
are referred to as either (u1, u2, u3) or (u, v, w) where u1 (u), u2 (v)
and u3 (w) are velocity components in the stream-wise (downwind),
wall-normal (vertical) and span-wise (crosswind) directions,
respectively.

4.1 Flow Structures. Figure 3 shows an instantaneous three-
dimensional snapshot of iso-contours of vertical velocity fluctua-
tions in the wind-driven flow with LC. Vertical velocity fluctua-
tions are characterized by negative and positive downwind
elongated regions, corresponding to the downwelling and upwell-
ing limbs of the Langmuir cells sketched in Fig. 1. Figure 4 shows
an instantaneous snapshot of downwind velocity fluctuations in
wind-driven flows with and without LC. In both flows, downwind
velocity fluctuation is characterized by downwind elongated
streaks alternating in sign in the crosswind direction. The simula-
tion with LC was initialized by “turning on” the C-L vortex force
in the simulation without LC after the latter had achieved statisti-
cal equilibrium. Animations (not shown) reveal that the vortex
force causes the positive streaks in the flow without LC to merge
together leading to a single pair of streaks (positive and negative).
The crosswind extent of the resulting positive streak is greater
than the negative streak.

In order to reveal the crosswind-vertical structure of the previ-
ously described downwind elongated streaks, we perform the fol-
lowing triple decomposition of the computed velocity:

ui ¼ uih i þ u0i
� �

tx
þu00i|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼u0i

(24)

where �h itx denotes averaging in time and over the downwind (x)
direction and the instantaneous velocity fluctuation is obtained via
the classical Reynolds decomposition:

ui ¼ uih i þ u0i (25)

where brackets without subscripts denote averaging over down-
wind (x) and crosswind (z) directions and over time. Note that the
prime notation used here to define the resolved turbulence veloc-
ity fluctuation is different from the prime notation in Eqs. (9) and
(10) used to define unresolved (subgrid) scales. The middle term
on the right hand side of Eq. (24) is defined as a partially averaged
fluctuation:

v0iðy; zÞ ¼ u0i
� �

tx
(26)

This partially averaged velocity fluctuation emphasizes coherent,
secondary flow structures in the downwind direction such as the
downwind elongated streaks observed in Fig. 4. Figures 5 and 6
show the crosswind-vertical structure of the partially averaged ve-
locity fluctuation in the flows with and without LC, respectively.
Overall, both cases exhibit positive and negative crosswind cell
structures in each of the partially averaged fluctuating velocity
components; the flow with LC has a spanwise one-cell structure
while the flow without LC has a less coherent spanwise two-cell
structure.

The one-cell structure in the flow with C-L forcing (Fig. 5) is
nearly identical to that obtained with the spectral LES of Tejada-
Martı́nez and Grosch [9] with the same wind and wave forcing

Table 1 Summary of mesh and time step sizes used in the sim-
ulations. In the table, Nx, Ny, and Nz are the number of basis
functions used in the simulation in each tensor product direc-
tion and Ntot is their total number. y1

1 is the size of the first ele-
ment in the wall-normal direction in non-dimensional wall units
(y1

1 5 usDy/m). Time step size Dt has been made dimensionless
with characteristic time scale given as d/us.

Nx Ny Nz Ntot y1
þ Dt

24 26 24 14976 4.62 0.025
32 34 32 34816 3.31 0.0188
48 50 48 115200 2.11 0.0125
64 66 64 270336 1.55 0.00935
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parameters described earlier. Recall that these parameters in the
C-L vortex force have been chosen as Lat¼ 0.7 and c¼ 12d follow-
ing the field measurements of Ref. [16]. Additionally, the one-cell
structure in the flow with C-L forcing possesses all of the basic
characteristics of full-depth Langmuir circulation expected based

on the field measurements in Ref. [16]. Experimental data in Ref.
[16] shows that the spanwise (crosswind) length of one Langmuir
cell is in the range of 6d and 12d. Accordingly, our computation
has predicted the generation of only one Langmuir cell as expected,
given the crosswind extent chosen for the domain (see Fig. 2).

Fig. 4 Color maps of instantaneous downwind velocity fluctuation u1’ on the downwind-
crosswind plane at mid-depth in flows with and without C-L vortex forcing (i.e., with and without
LC). Results are from the simulations on the 48 3 50 3 48 quadratic NURBS mesh described
earlier.

Fig. 3 Instantaneous snapshot of iso-contours of wall-normal (vertical) velocity fluctuations in
flow with LC on the 64 3 66 3 64 quadratic NURBS mesh described earlier
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As seen in Fig. 5, a change in sign of surface intensified v3
0 (in

panel (b) generates the surface convergence of the cell, which in
turns leads to the downwelling limb of the cell. The downwelling
limb is the full-depth region characterized by negative v2

0 (in panel
(c)). This region is depicted in the sketch shown in Fig. 1. Further-
more, the upwelling limb (region with positive v2

0) of the cell is
larger in crosswind extent than the downwelling region (region
with negative v2

0) in agreement with the field measurement of full-
depth LC in Ref. [16]. At mid depth the upwelling limb is approx-
imately 1.6 larger than the down-welling limb, which is close to
the 1.4 factor measured in the field. The downwelling limb coin-
cides with a region of bottom-and surface-intensified positive v1

0

(in panel (a)). Note that this region of full-depth positive v1
0 leads

to an enhanced downwind current as depicted in Fig. 1. The
enhancement of the downwind current within the Langmuir cell
downwelling region is by a factor of approximately 10 u* near the
surface and near the bottom of the water column. Finally, the one-
cell structure in the flow with C-L vortex forcing (Fig. 5) is signif-

icantly different in structure and magnitude of fluctuations from
the two-cell structure obtained in the flow without C-L vortex
forcing (Fig. 6).

In Fig. 7, the instantaneous velocity fluctuations have been
made dimensional with the wind stress friction velocity reported
by Gargett and Wells in Ref. [16] during their field observations
of full-depth Langmuir cells. Magnitudes of these fluctuations in
our LES are in close agreement with those measured in the field
(shown in Fig. 8) as well as with those computed using the spec-
tral method of Tejada-Martı́nez et al. [9,21]. In both, computa-
tions and field experiments, instantaneous streamwise and
spanwise velocity fluctuations are in the 68 cm/s range and the
vertical velocity fluctuation is in the 64 cm/s range. Note that the
field measurements in Ref. [16] were made using a bottom-
mounted, upward-facing acoustic Doppler current profiler
(ADCP) in a 15-meter deep water column off the southern New
Jersey coast undergoing strong wind and wave forcing. Mean
wind stress was 0.1 N/m2 and mean wave height was 1 m. The

Fig. 5 Crosswind-vertical variation of velocity fluctuations vi
0 (defined in Eq. (26)) in flow with

LC. Results are from the simulation on the 48 3 50 3 48 quadratic NURBS mesh.

Fig. 6 Crosswind-vertical variation of partially averaged velocity fluctuations vi
0 (defined in

Eq. (26)) in flow without LC. Results are from the simulation on the 48 3 50 3 48 quadratic
NURBS mesh.
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ADCP was not able to make a reliable measurement of the upper-
most 15% of the water column. Furthermore, the computations do
not take into account the effect of wave breaking at the surface.
Thus comparison between field measurements and the LES should
not include the near-surface region. Comparison of panels (b) in
Figs. 7 and 8 shows that the LES is able to resolve the near-
bottom intensification of the full-depth region of positive down-
wind velocity fluctuations measured in the field. Furthermore, in
Fig. 8 note that the region of downwelling (panel (c)) coincides
with a region of positive downwind velocity fluctuations (panel
a), which as described earlier is also the case in the LES (see Figs.
5 and 7).

In conclusion, predictions from our computation with C-L vor-
tex forcing compare favorably with field measurements in Ref.

[16] in spite of the low Reynolds number of the computation
(Re¼ 395) compared to the Reynolds number of the observations
(Re � 50,000).

4.2 Mesh Convergence. Next we present mesh convergence
studies on quadratic NURBS meshes in terms of mean downwind
velocity and turbulent kinetic energy (TKE) for flow with full-
depth LC. Mean velocity, TKE, budgets of TKE and budgets of
TKE components for this flow and the corresponding flow without
LC have been analyzed in detail in Ref. [9]. Here we focus strictly
on mesh convergence. Details of the meshes considered are given
in Table 1. Note that for the coarsest mesh of 24� 26� 24
elements, the first wall-normal mesh knot is at a distance yþ1
¼ usDy/v¼ 4.62. For the the finest mesh of 64� 66� 64 elements,

Fig. 7 Crosswind-vertical variation of velocity instantaneous velocity fluctuations ui
0 (in cm/s).

Results are from the simulation on the 48 3 50 3 48 quadratic NURBS mesh. Computational
velocities have been made dimensional with wind stress friction velocity recorded in the field
during episodes of full-depth LC [6]. Field measurements were made in a 15-meters deep water
column under a wind stress of 0.1 N/m2.

Fig. 8 Crosswind-vertical variation of velocity instantaneous velocity fluctuations ui
0 (in cm/s)

during episode of full-depth Langmuir cells measured during field experiments of Gargett and
Wells [6] using a bottom-mounted, upward-facing acoustic Doppler current profiler (ADCP).
Field measurements were made in a 15 ms-deep water column under a wind stress of 0.1 N/m2.
This figure is courtesy of Ann Gargett.
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yþ1 ¼ 1.55. Thus for all meshes considered, the first point off the
bottom (top) is within the viscous sublayer.

Mean downwind velocity is expressed as hui, recalling that
brackets denote averaging over time and downwind and cross-

wind directions. TKE is defined in terms of velocity fluctuations
as TKE¼hu0u0 þ v0v0þ w0w0i/2, where velocity fluctuations are
again obtained via the classical Reynolds decomposition:
u¼huiþu0.

Fig. 9 Convergence of mean downwind velocity in flow with LC. Quadratic NURBS meshes
were used for all cases.

Fig. 10 Convergence of turbulent kinetic energy (TKE) in flow with LC. Quadratic NURBS
meshes were used for all cases.
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Fig. 11 Mean downwind velocity in flows with and without LC. The 48 3 50 3 48 quadratic
NURBS mesh was used for both flows.

Fig. 12 Mean downwind velocity versus wall-normal (vertical) direction in wall (plus) units in
flows with and without LC. The 48 3 50 3 48 quadratic NURBS mesh was used for both flows.
Note that y1 5 usy/v.
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We only present our computational results, because no direct
numerical simulation (DNS) of this test case exists that we could
use as a benchmark solution. Figure 9 shows convergence of the
mean velocity profile. The 24� 26� 24 mesh gives a significant
over-prediction of the mean flow. The results improve for the 32
� 34� 32 mesh. Further improvement is seen for the 48� 50
� 48 mesh. The 64� 66� 64 mesh yields a nearly indistinguish-
able mean velocity profile from the 48� 50� 48 case. Similar
convergence pattern is observed for the TKE in Fig. 10, however,
very small differences between the 48� 50� 48 and the 64� 66
� 64 cases are visible in the figure.

4.3 Disruption of the Log Layer. Figures 11 and 12 provide
a comparison between the flow with LC and the same flow with-
out LC in terms of mean velocity in order to highlight the effects
induced by LC. The action of LC serves to homogenize momen-
tum throughout the water column leading to a near constant veloc-
ity profile in the core region and thinner viscous sublayers at the
surface and bottom. Figure 12 shows mean velocity versus wall-
normal direction in wall units in the lower half of the water col-
umn. The flow without LC exhibits a well-developed, near-bottom
log-layer. Meanwhile in the flow with LC, enhanced mixing asso-
ciated with the Langmuir cells disrupts the classical log-layer
region inducing an extended wake region at depths normally char-
acterized by the log-law. A similiar log-layer disruption has been
reported in Ref. [21] in their LES of full-depth LC. Disruption of
the log-layer by the action of LC has important implications for
general coastal ocean circulation models (GCOCMs). Traditional
Reynolds Navier-Stokes (RANS) parameterizations of the turbu-
lent bottom boundary layer in GCOCMs assume the presence of a
well-developed log-layer. Thus, these parameterizations are not
able to properly account for log-layer disruption caused by full-
depth LC and ultimately wave-current interaction.

5 Conclusions and Future Work

We have successfully extended variational multiscale turbu-
lence modeling procedures to the C-L equations using isogeomet-
ric analysis based on quadratic NURBS. The C-L equations were
expressed in semilinear form revealing an advection-diffusion
system characterized by nonsymmetric advective matrices. The
weak form of this system was treated with the residual-based mul-
tiscale formulation in Ref. [20] together with stabilization parame-
ters defined in terms of the aforementioned advective matrices
based on the theory presented in Ref. [29]. No-slip conditions
were enforced weakly following the approach described in Refs.
[23,35,36].

The methodology showed good convergence properties for a
wind-driven shear flow characterized by large-scale stream-wise
structures (full-depth Langmuir circulation) in agreement with the
spectral results in Ref. [9] and the field measurements in Refs.
[15,16]. A major impact of the full-depth Langmuir cells was
shown to be enhanced mixing of momentum leading to a disrup-
tion of the classical near-bottom log-layer.

Future research will use the method developed in this manu-
script to investigate effects of complex topography on Langmuir
circulation and other mixing processes in coastal oceans and
estuaries. Furthermore, we will explore weak enforcement of
Dirichlet boundary conditions potentially serving as a model of
prohibitively expensive viscous sublayers in continental shelf
flows.
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